FSHDMI04

Wide－Bandwidth Differential Signaling HDMI Switch

Features

－ 1.65 Gbps throughput
－ 8 kV ESD protection
－－26dB non－adjacent channel crosstalk at 825 MHz
－Isolation ground between channels
－Low skew
－Inter－pair skew <150 ps
－Intra－pair skew＜90ps
－Fast turn on／off time
－Low power consumption（ $1 \mu \mathrm{~A}$ maximun）
－Control input：TTL compatible

Applications

－UXGA and 1080p DVI and HDMI video source selection

General Description

The FSHDMIO4 is a wide bandwidth switch for routing HDMI Link Data and Clock signals．This device supports data rates up to 1.65 Gbps per channel for UXGA resolu－ tion．It can also be used to switch TMDS－based DVI digi－ tal video streams．Possible applications include LCD TV， DVD，Set－Top Box，notebook computers and other designs with multiple digital video interfaces．The FSHDMIO4 switch allows the passage of HDMI link sig－ nals with low non－adjacent channel crosstalk and supe－ rior OFF－Isolation．This performance is critical to minimize ghost images between active video sources in video applications．The wide bandwidth of this switch allows the high speed differential signal to pass through the switch with minimal additive skew and phase jitter．

Ordering Information

Order Number	Package Number	Package Description
FSHDMI04QSPX	MQA48A	48－Lead Quarter Size Very Small Outline Package（QVSOP），JEDEC MO－154， 0．150inches Wide
FSHDMI04MTDX	MTD48	48－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，6．1mm Wide
FSHDMI04BQX （Preliminary）	MLP56	56－Lead Molded Leadless Package（MLP），5x7mm Wide

Applications Diagram

Pin Assignments

Pin	Function	Pin	Function
A1	NC	A21	C1－
A2	$2 \mathrm{CO}-$	A22	C1＋
A3	1C1＋	A23	VCC
A4	1C1－	A24	NC
A5	2C1－	A25	GND
A6	GND	A26	VCC
A7	1C2＋	A27	Vcc
A8	1C2－	A28	GND
A9	GND	B1	2C0＋
A10	NC	日2	1C0－
A11	2C3－	日3	GND
A12	GND	B4	2C1＋
A13	VCC	B5	NC
A14	GND	日6	NC
A15	NC	B7	2C2＋
A16	GND	日8	2C2－
A17	C2－	日9	103＋
A18	C2＋	B10	2C3＋
A19	OE	B11	1C3－
A20	5	B12	NC

Pin	Function
B13	NC
B14	C3－
B15	GND
B16	C3＋
B17	VCC
B18	GND
B19	NC
日20	NC
日21	GND
B22	GND
日23	C0－
日24	GND
日25	$\mathrm{CO}+$
日26	NC
日27	NC
日28	$1 \mathrm{C0}+$

Figure 1．MLP Pin Assignments

Pin Assignments

Truth Table

\mathbf{S}	$\overline{\mathbf{O E}}$	Function
X	H	Disconnected
L	L	$1 C_{n}=C_{n}$
H	L	$2 C_{n}=C_{n}$

Pin Descriptions

Pin Name	Description
$\overline{\mathrm{OE}}$	Bus Switch Enable
S	Select Input
$1 \mathrm{C}_{\mathrm{n}}, 2 \mathrm{C}_{\mathrm{n}}, \mathrm{CO}_{\mathrm{n}}, \mathrm{C1}_{\mathrm{n}}, \mathrm{C} 2_{\mathrm{n}}, \mathrm{C} 3_{\mathrm{n}}$	Data Ports

Figure 2．QVSOP and TSSOP Pin Assignments

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation.

Symbol	Parameter	Rating
V_{CC}	Supple Voltage	-0.5 V to +4.6 V
$\mathrm{~V}_{\mathrm{S}}$	DC Switch Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.05$
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage ${ }^{(1)}$	-0.5 V to +4.6 V
$I_{\text {IK }}$	DC Input Diode Current	-50 mA
$I_{\text {OUT }}$	DC Output Sink Current	128 mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	ESD, Human Body Model	$8,000 \mathrm{~V}$

Recommended Operating Conditions ${ }^{(2)}$

Symbol	Parameter	Rating
V_{CC}	Power Supply Operating	3.0 V to 3.6 V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage	0 V to V_{CC}
	Switch Input Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

DC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} @ 25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	3.0			-1.2	V
V_{IH}	Input Voltage HIGH		3.0-3.6	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW		3.0-3.6			0.8	V
I_{IN}	Control Input Leakage	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{CC}	3.6			± 1.0	$\mu \mathrm{A}$
I_{Oz}	OFF-STATE Leakage	$0 \leq n C_{n}, C_{n} \leq V_{C C}$	3.6			± 1.0	$\mu \mathrm{A}$
R_{ON}	Switch On Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.6 \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \end{aligned}$	3.0		12.0	19.0	Ω
$\mathrm{R}_{\text {ON(FLAT) }}$	Switch On Resistance Flatness ${ }^{(4)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.6 \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{ON}}=10 \mathrm{~mA} \end{aligned}$	3.0		1.0		Ω
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\text {OUT }}=0$	3.6			1.0	$\mu \mathrm{A}$

Notes:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
2. Unused control inputs must be held HIGH or LOW. They may not float.
3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
4. Flatness is defined as the difference between the maximum and minimum value on resistance over the specified range of conditions.

AC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} @ 25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Figure Number
				Min.	Typ.	Max.		
${ }^{\text {toN }}$	Turn ON Time S, OE-to-Output	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.5, \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		4.0	6.0	ns	Figure 7 Figure 8
toff	Turn OFF Time S, $\overline{\mathrm{OE}}$-to-Output	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.5, \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		2.0	4.0	ns	Figure 7 Figure 8
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.5, \\ & \mathrm{R}_{\mathrm{PU}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		3.0			Figure 14
$\begin{aligned} & \mathrm{t}_{\mathrm{PD}} \\ & \left(\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}\right) \end{aligned}$	Switch Propagation Delay	$\mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.0 to 3.6			250	ps	Figure 7 Figure 13
T JITTER	Total Jitter (DJ + RJ)	$\mathrm{f}=165 \mathrm{MHz}$ Clock with	3.0 to 3.6		55.0		ps	Figure 7
$\mathrm{T}_{\text {RATIO }}$	Duty Cycle Ratio	$\mathrm{RPU}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			50.0		\%	
$\mathrm{T}_{\text {SK1 }}$	Intra-Pair Skew $\mathrm{C}_{\mathrm{n}}+\text { to } \mathrm{C}_{\mathrm{n}}{ }^{(5)}$	$\begin{aligned} & \mathrm{f}=1.65 \mathrm{Gbps}, 2^{23}-1 \mathrm{PRBS} \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		55.0	90.0	ps	Figure 7 Figure 13
$\mathrm{T}_{\text {SK2 }}$	Inter-Pair Skew ${ }^{(5)}$ (Between any two switch paths)	$\begin{aligned} & \mathrm{f}=1.65 \mathrm{Gbps}, 2^{23}-1 \mathrm{PRBS} \\ & \mathrm{R}_{\mathrm{PU}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.0 to 3.6		90.0	150.0	ps	Figure 7 Figure 13
$\mathrm{O}_{\mathrm{IRR}}$	OFF-Isolation	$\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=370 \mathrm{MHz}$	3.0 to 3.6		-35.0		dB	Figure 9
		$\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=825 \mathrm{MHz}$	3.0 to 3.6		-25.0			
Xtalk	Non-Adjacent Channel Crosstalk	$\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=370 \mathrm{MHz}$	3.0 to 3.6		-30.0		dB	Figure 10
		$\mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=825 \mathrm{MHz}$	3.0 to 3.6		-26.0			
$\mathrm{f}_{\text {MAX }}$	Maximum Throughput		3.3		1.65		Gbps	

Notes:
5. Guaranteed by characteristics and design.

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units
			Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		1.1		pF
$\mathrm{C}_{\text {ON }}$	nC_{n} ON Capacitance	$V_{C C}=3.3 \mathrm{~V}$		6.0		pF
$\mathrm{C}_{\text {OFF }}$	Port C_{n} OFF Capacitance	$V_{C C}=3.3 \mathrm{~V}$		2.5		pF

Typical Characteristics

$\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V}$

Figure 3. Off- Isolation, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Figure 4. Crosstalk, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{CV}$

Test Diagrams

Figure 5. On Resistance

Each switch port is tested separately.

Figure 6. OFF Leakage

Figure 7. AC Test Circuit Load

Test Diagrams (Continued)

Figure 8. Turn ON / Turn OFF Waveforms

R_{S} and R_{T} are functions of the application environment (see AC/DC Tables for values of R_{T})

OFF-Isolation $=20 \log \left(\mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}\right)$
Figure 9. Channel OFF-Isolation

Figure 10. Non-adjacent Channel-to-Channel Crosstalk

Figure 11. Channel OFF-Capacitance

Figure 12. Channel ON-Capacitance

Test Diagrams (Continued)

$R_{P U}$ and C_{L} are functions of application environment (see $A C / D C$ Tables for values of C_{L} and $R_{P U}$) ${ }^{*} C_{L}$ includes fixture and stray capacitance

Figure 14. Break-Before-Make

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

DETAIL A

NDTES
A. THIS PACKAGE CDNFORMS TI JEDEC MO-154 VERSIDN AB
B. ALL DIMENSIDNS IN MILLIMETERS
C. DRAWING CDNFDRMS TD ASME Y14.5M1994
D. DIMENSIDNS ARE EXCLUSIVE GF BURRS, MDLD

FLASH, AND TIE BAR EXTRUSIDNS.

MQA48AREVA

Figure 15. 48-Lead Quarter Size Very Small Outline Package (QVSOP), JEDEC MO-154, 0.150inches Wide

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION ED, DATE 4/97.
B. DIMENSIONS ARE IN MILUMETERS.

C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE GAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

MTD48REVC
Figure 16. 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

Figure 17. 56-Lead Molded Leadless Package (MLP) 5x7mm

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FACT Quiet Series ${ }^{\text {TM }}$	OCX ${ }^{\text {™ }}$	SILENT SWITCHER ${ }^{\text {® }}$	UniFET ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {™ }}$	GlobalOptoisolator ${ }^{\text {TM }}$	OCXPro ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$	UltraFET ${ }^{\circledR}$
Bottomless ${ }^{\text {TM }}$	$\mathrm{GTO}^{\text {™ }}$	OPTOLOGIC ${ }^{\circledR}$	SPM ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
Build it $\mathrm{Now}^{\text {™ }}$	$\mathrm{HiSeC}^{\text {™ }}$	OPTOPLANAR ${ }^{\text {TM }}$	Stealth ${ }^{\text {TM }}$	Wire ${ }^{\text {TM }}$
CoolFET ${ }^{\text {m }}$	$1^{2} \mathrm{C}^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	
CROSSVOLT ${ }^{\text {TM }}$	$i-L O^{\text {TM }}$	POP ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-3	
DOME ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	Power247 ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	
EcoSPARK ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$	PowerEdge ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-8	
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	ISOPLANAR ${ }^{\text {TM }}$	PowerSaver ${ }^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {™ }}$	LittleFET ${ }^{\text {m }}$	PowerTrench ${ }^{\circledR}$	TCM ${ }^{\text {™ }}$	
FACT ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyBoost ${ }^{\text {TM }}$	
FAST ${ }^{\text {® }}$	MicroFET ${ }^{\text {M }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {TM }}$	
FPS ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$	
FRFET ${ }^{\text {TM }}$	MSX ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$	
	MSXPro ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {TM }}$	TINYOPTO ${ }^{\text {TM }}$	
Across the board. Around the world. ${ }^{\text {TM }}$		μ SerDes ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$	
The Power Franchise ${ }^{\circledR}$		ScalarPump ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$	

Programmable Active Droop ${ }^{\text {TM }}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	Full Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

